ЕВРАЗИЙСКИЙ COBET ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (EACC)

EURO-ASIAN COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (EASC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ΓΟCT31371.5—20__(ISO 6974-5:2014)

ГАЗ ПРИРОДНЫЙ

ОПРЕДЕЛЕНИЕ СОСТАВА МЕТОДОМ ГАЗОВОЙ ХРОМАТОГРАФИИ С ОЦЕНКОЙ НЕОПРЕДЕЛЕННОСТИ

Часть 5

Определение азота, диоксида углерода и углеводородов С₁ - С₅ и С₆₊ изотермическим методом

(ISO 6974-5:2014,

Natural gas — Determination of composition and associated uncertainty by gas chromatography — Part 5: Isothermal method for nitrogen, carbon dioxide, C₁ to C₅ hydrocarbons and C₆₊ hydrocarbons,

MOD)

Издание официальное

Минск

Евразийский совет по стандартизации, метрологии и сертификации

20___

Предисловие

Евразийский совет по стандартизации, метрологии и сертификации (EACC) представляет собой региональное объединение национальных органов по стандартизации государств, входящих в Содружество Независимых Государств. В дальнейшем возможно вступление в EACC национальных органов по стандартизации других государств.

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Публичным акционерным обществом «Газпром» и Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д. И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 52 «Природный и сжиженные газы»

3 ПРИНЯТ Евразийским советом по стандартизации, метрологии и сертификации (протокол от «26» августа 2021 г. № 142-П)

За принятие проголосовали:

Краткое наименование	Код страны по	Сокращенное наименование
страны	MK (NCO	национального органа по стандартизации
по МК (ИСО 3166) 004—	3166) 004—97	
97		
Азербайджан	AZ	Азстандарт
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Кыргызстан	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Российская Федерация	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Туркменистан	TM	Главгосслужба «Туркменстандартлары»
Узбекистан	UZ	Узстандарт
Украина	UA	Минэкономразвития Украины

4 Настоящий стандарт является модифицированным по отношению к международному стандарту ISO 6974—5:2014 «Газ природный. Определение состава и связанной с ним неопределенности газовой хроматографией. Часть 5. Изотермический метод определения азота,

диоксида углерода, углеводородов C_1 - C_5 и углеводородов C_{6+} .» («Natural gas — Determination of composition and associated uncertainty by gas chromatography — Part 5: Isothermal method for nitrogen, carbon dioxide, C_1 to C_5 hydrocarbons and C_{6+} hydrocarbons, MOD») путем внесения технических отклонений, объяснение которых приведено во введении к настоящему стандарту.

Сведения о соответствии ссылочных межгосударственных стандартов международным стандартам, использованным в качестве ссылочных в примененном международном стандарте, приведены в дополнительном приложении ДА.

Изменения структуры межгосударственного стандарта, модифицированного по отношению к международному стандарту приведены в дополнительном приложении ДБ.

5 B3AMEH ΓΟCT 31371.5—2008

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты».

© ISO, 2014 — Все права сохраняются

© Стандартинформ, оформление, 20___

Исключительное право официального опубликования настоящего стандарта на территории указанных выше государств принадлежит национальным (государственным) органам по стандартизации этих государств

Содержание

1	Область прим	иенения
2	Нормативные	ССЫЛКИ
3	Метод измере	ений
4	Материалы	
5	Аппаратура	
6	Схематическо	ре изображение конфигурации системы переключения
	колонок	
7	Проведение	анализа
	7.1 Контроль	оборудования
	7.2 Работа об	борудования
8	Обработка ре	зультатов
	8.1 Неопреде	ленность
	8.2 Протокол	испытания
Пр	иложение А	(справочное) Пример применения
Пβ	иложение В	(справочное) Процедура настройки времени переключения
		кранов и настройки ограничителя
Пβ	иложение ДА	(справочное) Сведения о соответствии межгосударственных
		стандартов международным документам, использованным в
		качестве ссылочных в примененном международном
		стандарте
Пр	иложение ДБ	(справочное) Изменения структуры межгосударственного
		стандарта, модифицированного по отношению к
		международному стандарту
Бν	блиография	

Введение

Настоящий стандарт входит в серию стандартов ГОСТ 31371 «Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности» и описывает метод анализа природного газа, который обычно используют при проведении измерений потоковыми хроматографами, но может быть реализован и на лабораторном оборудовании. Полученные данные о составе природного газа используют при вычислении теплоты сгорания, плотности и числа Воббе.

Предполагается, что изначально природный газ не содержит кислорода и что кислород, который может оказаться в его составе, появляется в результате загрязнения в процессе отбора пробы.

Основным применением этого хроматографического метода является вычисление теплоты сгорания в соответствии с ГОСТ 31369. Метод основан на технике переключения в автоматическом режиме нескольких колонок, подобранных по их разделительной способности конкретных групп компонентов.

Для этого метода необходим только один ввод пробы, первая фаза метода включает обратную продувку для измерения суммарного пика «псевдокомпонента» C_{6+} (а не сумму пиков отдельных компонентов). Наиболее легкие компоненты (азот, метан, диоксид углерода и этан) удерживаются на подходящей разделительной колонке до тех пор, пока выходят более тяжелые углеводороды C_3 - C_5 . Затем разделяют легкие компоненты, перенаправив газ-носитель в соответствующую колонку.

Для определения указанных выше компонентов используют детектор по теплопроводности (ДТП).

При внедрении методики устанавливают повторяемость результатов измерений путем повторного анализа контрольного газа (не 10-ти вводов), обычно типичного природного газа. Для каждого компонента контрольного газа создают контрольную карту, показывающую среднее значение и границы, соответствующие 2-м и 3-м стандартным отклонениям. Контрольный газ анализируют после первичной градуировки хроматографа и результаты сравнивают с данными на контрольных картах (при условии линейной градуировочной зависимости). Этим методом оценивают стабильность рабочих характеристик хроматографа.

Любое изменение в комплектации хроматографа может привести к различиям

ΓΟCT 31371.5—202

(проект, окончательная редакция)

в откликах компонентов и, следовательно, (если выполняется) к вычисленным неопределенностям. В этих условиях подгонка данных к существующей контрольной карте неприемлема, и операции, выполняемые при внедрении методики, необходимо повторить для новой комплектации хроматографа.

В этой части ГОСТ 31371 приведен один из методов, который можно использовать для определения состава природного газа в соответствии с ГОСТ 31371.1 и ГОСТ 31371.2.

Для учета потребностей национальных экономик государств, принявших стандарт, в текст настоящего стандарта внесены следующие изменения:

- исключена из пункта 7.2.4 ссылка на ISO 7504:2001, так как документ является не действующим;
- исключен из раздела «Библиография» ISO 7504:2001, так как на него отсутствуют ссылки в тексте стандарта;
 - включена дополнительная сноска в пункт 7.2.4, выделенная курсивом;
 - исключена из раздела А.1 приложения А ссылка на ИСО 10723.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ГАЗ ПРИРОДНЫЙ

ОПРЕДЕЛЕНИЕ СОСТАВА МЕТОДОМ ГАЗОВОЙ ХРОМАТОГРАФИИ С ОЦЕНКОЙ НЕОПРЕДЕЛЕННОСТИ

Часть 5

Определение азота, диоксида углерода и углеводородов C₁ - C₅ и C₆₊ изотермическим методом

Natural gas. Determination of composition and associated uncertainty by gas chromatography. Part 5. Isothermal method for nitrogen, carbon dioxide, C₁ to C₅ hydrocarbons and C₆₊ hydrocarbons

Дата введения 20 - -

1 Область применения

Настоящий стандарт устанавливает процедуру количественного определения содержания азота, диоксида углерода и углеводородов C_1 - C_5 индивидуально и суммарного содержания C_{6+} , представленного всеми углеводородами с числом атомов углерода 6 и выше, в пробах природного газа методом газовой хроматографии. Настоящий стандарт применяют для анализа природного газа в пределах рабочих диапазонов, приведенных в таблице 1.

Таблица 1 – Рабочие диапазоны молярной доли компонентов

		Молярна	я доля, %	
Компонент	Формула	Минимальное	Максимальное	
		значение	значение	
Азот	N ₂	0,1	22	
Диоксид углерода	CO ₂	0,05	15	
Метан	CH ₄	34	100	
Этан	C ₂ H ₆	0,1	23	

Окончание таблицы 1

		Молярна	я доля, %
Компонент	Формула	Минимальное	Максимальное
		значение	значение
Пропан	C ₃ H ₈	0,05	10
<i>изо</i> -Бутан	<i>изо</i> -С ₄ H ₁₀	0,01	2,0
<i>н</i> -Бутан	<i>H</i> -C ₄ H ₁₀	0,01	2,0
нео-Пентан	<i>нео-</i> С ₅ Н ₁₂	0,005	0,35
изо-Пентан	<i>изо-</i> С ₅ Н ₁₂	0,005	0,35
<i>н</i> -Пентан	<i>H</i> -C ₅ H ₁₂	0,005	0,35
Гексаны+	C ₆₊	0,005	0,35

Примечание 1 – Рабочие диапазоны в таблице 1 – это рекомендованные к применению диапазоны, для которых метод дал удовлетворительные результаты. В то же время возможно проведение измерений в более широких диапазонах при условии подтверждения полученными положительными результатами.

Примечание 2 — Углеводороды тяжелее H-пентана рассматривают как «псевдокомпонент» C_{6+} , который измеряют как один суммарный пик и градуируют как таковой. Свойства C_{6+} определяют на основании расширенного анализа индивидуальных C_6 и более тяжелых углеводородов (например по ГОСТ 31371.7—2020, метод A).

Примечание 3 – Обычно природный газ не содержит кислород, он отсутствует и в газовой пробе для потокового хроматографа. Если кислород присутствует в пробе природного газа в результате загрязнения ее воздухом, то его измеряют совместно с азотом. Измеренное суммарное значение молярной доли (азот + кислород) будет несущественно отличаться от значения, полученного при раздельном измерении указанных компонентов, из-за незначительной разницы между откликами детектора на азот и кислород.

Примечание 4 — Содержание гелия, водорода и аргона предполагают пренебрежимо малым и не изменяющимся, так что нет необходимости определять содержание этих газов. Рекомендуется определить фактическое содержание гелия и водорода и при необходимости учитывать их при вычислениях по ГОСТ 31369.

Примечание 5 — Проба газа не должна содержать углеводородного конденсата и/или воды.

Отбор проб проводят в соответствии с ГОСТ 31370.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты и классификаторы:

ГОСТ 31369 (ИСО 6976:2016) Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава

ГОСТ 31370 (ИСО 10715:1995) Газ природный. Руководство по отбору проб

ГОСТ 31371.1—2020 (ИСО 6974–1:2012) Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Часть 1. Общие указания и определение состава

ГОСТ 31371.2—2020 (ИСО 6974–2:2012) Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Часть 2. Вычисление неопределенности

ГОСТ 31371.7—2020 Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Часть 7. Методика измерений молярной доли компонентов

ГОСТ 34100.3/ISO/IEC Guide 98-3:2008 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения

МК (ИСО 3166)004—97 Межгосударственный классификатор стран мира

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым государствах, указанных в предисловии, или на официальных соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Метод измерений

На рисунке 1 представлена блок-схема, содержащая этапы аналитического процесса определения молярной доли компонентов и неопределенности. Блок-схема составлена на основе более детальных блок-схем, приведенных в ГОСТ 31371.1 и ГОСТ 31371.2, и представлена в упрощенном виде для процедур, описанных в настоящем стандарте. Для каждого

этапа даны ссылки на соответствующие разделы настоящего стандарта, а также в круглых скобках – ссылки на соответствующие разделы и подразделы ГОСТ 31371.1 и ГОСТ 31371.2.

Примечание — Этапы, приведенные на рисунке 1, идентичны этапам на блоксхемах А и В ГОСТ 31371.1—2020. Этап 5 предусматривает использование относительных коэффициентов чувствительности для определения содержания компонентов методом косвенных измерений. Поскольку метод косвенных измерений в настоящем стандарте не используют, этап 5 исключен из блок-схемы.

В хроматографическом методе используют конфигурацию системы переключения колонок, которая представлена на рисунке 2. Пробу с помощью крана дозатора V1 вводят в колонку 1 с низкой разделяющей способностью, которая позволяет задержать в себе группу компонентов C6+, пропустив при этом более легкие компоненты в колонку 2 с более высокой разделяющей способностью. В этот момент посредством переключения крана V2 меняют направление потока по колонке 1, при этом группу компонентов C6+ направляют на детектор и регистрируют как суммарный пик. Далее, после прохождения азота, диоксида углерода, метана и этана в колонку 3, кран V3 переключают, запирая эти компоненты. После выхода из колонки 2 и 1 компонентов C3-C5, кран V3 возвращают в исходное положение, направляя азот, диоксид углерода, метан и этан по колонке 3 в колонку 1 и на детектор.

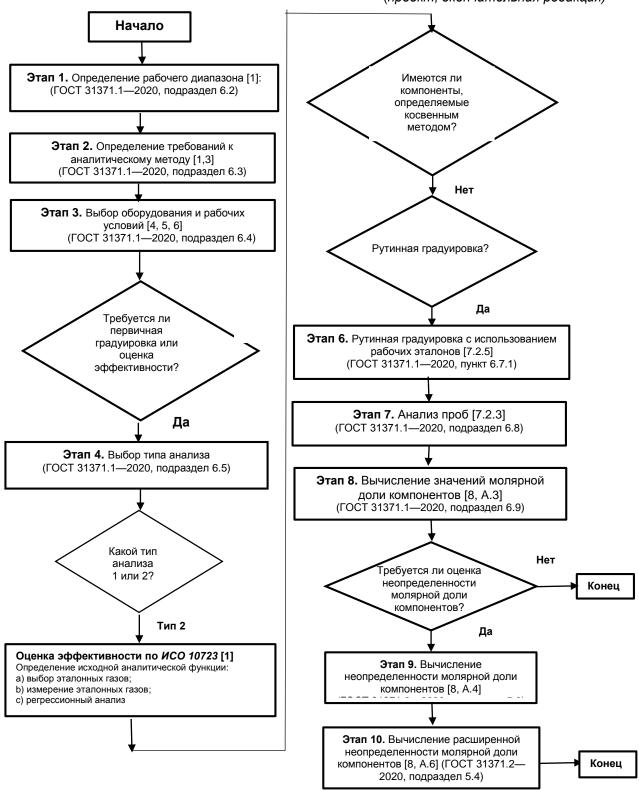


Рисунок 1 – Процедура определения молярной доли компонентов и неопределенности (блок-схема)

Пояснение к блок-схеме: номера в квадратных скобках, например [6.4], относятся к соответствующему номеру структурного элемента данной части стандарта. Курсив в квадратных скобках, например [6.4], указывает на соответствующий номер структурного элемента в 1-ой или во 2-ой частях стандарта.

ΓΟCT 31371.5—202

(проект, окончательная редакция)

На колонках происходят следующие процессы разделения:

Колонка 1 удерживает компоненты C₆₊, анализируемые при обратной продувке в виде одного суммарного пика.

Колонка 2 разделяет пропан, изобутан, H-бутан, неопентан, изопентан и H-пентан (которые элюируются после того, как C_{6+} вышел из колонки 1).

Колонка 3 удерживает и разделяет азот, метан, диоксид углерода и этан, которые элюируются после того, как *н*–пентан вышел из колонки 2.

4 Материалы

- **4.1 Газ-носитель**, гелий (He) *марки A*, с содержанием основного компонента не менее 99,995 %, содержащий кислород+аргон не более 0,0001 % и пары воды не более 0,0005 %.
- **4.2 Вспомогательные газы**, сжатый воздух для срабатывания кранов (в случае низкого потребления для срабатывания кранов может быть использован газ-носитель).

Примечание - Для кранов с электрическим приводом вспомогательные газы не требуются.

4.3 Стандартные образцы

- **4.3.1 Аттестованные эталонные газовые смеси** согласно ГОСТ 31371.1.
- **4.3.2 Газовая смесь содержащая** *н*-пентан и **2,2-диметилбутан**, используемая для проверки синхронизации работы кранов (см. Приложение В).

5 Аппаратура

- **5.1 Газовый хроматограф,** обеспечивающий работу в изотермических условиях и оснащенный ДТП.
- **5.2 Термостат колонок,** диапазон температур от 70 °C до 150 °C, обеспечивающий поддержание температуры в пределах ± 0,1 °C.
- **5.3 Термостат кранов,** позволяющий поддерживать температуру в диапазоне от 70 °C до 150 °C, или краны, установленные в термостате колонок.
- **5.4 Регулятор расхода** для установления необходимого расхода газаносителя.

- **5.5 Устройство для ввода пробы (дозатор)**, V1, шестипортовый крандозатор.
- **5.6 Кран обратной продувки**, V2, шестипортовый кран для быстрой обратной продувки для выхода компонентов C₆₊. Можно использовать один 10-портовый кран-распределитель для обеих задач. Принцип действия аналогичен.
- **5.7 Запорный кран,** V3, шестипортовый. Кран позволят направлять газноситель через колонку, заполненную полимерным сорбентом (колонка 3) или обходить ее.
- 5.8 Колонки. Колонки должны удовлетворять требованиям к рабочим характеристикам, приведенным в 7.2.4. Используемые материалы для набивки колонок и размеры колонок, данные в качестве примеров, должны удовлетворительно сочетаться с кранами-дозаторами и детекторами ДТП. Можно использовать любое альтернативное сочетание колонок, которое обеспечивает удовлетворительное разделение компонентов и соответствие требованиям к рабочим характеристикам хроматографа. Можно выбрать микронасадочные колонки и капиллярные колонки с соответствующими им размерами дозаторов и детекторов, а также набивные колонки с другими наполнителями.

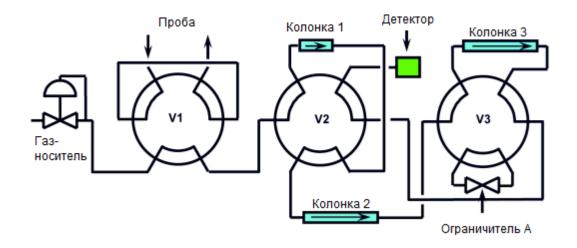
5.9 Колонки и наполнители

5.9.1 Комплект колонок 1

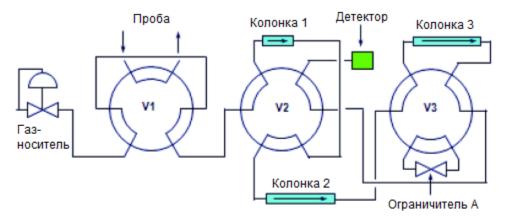
- 5.9.1.1 Колонка 1: 28 % силиконовое масло DC 200/500 на Chromosorb P-AW, 45/60 меш, длина 0,75 м, внутренний диаметр 2 мм.
- 5.9.1.2 Колонка 2: 28 % силиконовое масло DC 200/500 на Chromosorb P-AW, 45/60 меш, длина 5,2 м, внутренний диаметр 2 мм.
- 5.9.1.3 Колонка 3: 15 % силиконовое масло DC 200/500 на Porapak N P-AW, 50/80 меш, длина 2,4 м, внутренний диаметр 2 мм.

5.9.2 Комплект колонок 2

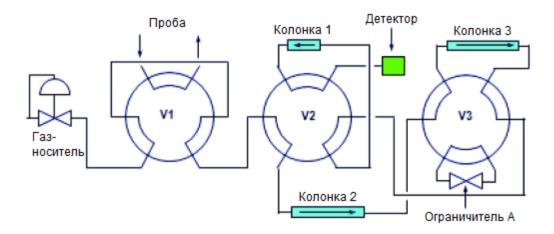
- 5.9.2.1 Колонка 1: 28 % оксидипропионитрил на Porasil C, длина 0,3 м, внутренний диаметр 0,75 мм.
- 5.9.2.2 Колонка 2: 20 % силиконовое масло SF-96 на Chromosorb W, 80/100 меш, длина 2,1 м, внутренний диаметр 0,75 мм.
- 5.9.2.3 Колонка 3: 15 % силиконовое масло DC 200/500 на HayeSep N, длина 2,1 м, внутренний диаметр 0,75 мм.

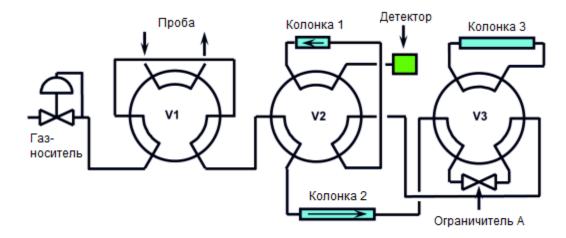

5.10 Метод наполнения, можно использовать любой метод, который дает равномерное наполнение колонки.

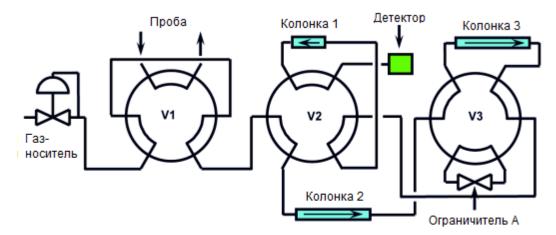
Примечание – Пригодным является следующий метод.


Закрывают выход колонки пористым диском или пробкой из стекловаты. К входу колонки подсоединяют емкость с наполнителем в количестве, большем, чем нужно для заполнения им колонки, и подают в эту емкость азот при избыточном давление 0,4 МПа. Равномерное заполнение колонки наполнителем обеспечивается за счет вибрации, например, с использованием ультразвуковой ванны. После заполнения колонки медленно сбрасывают давление, затем отсоединяют емкость.

- **5.11 Детектор по теплопроводности (ДТП) с** постоянной времени не больше 0,1 с и внутренним объемом, соответствующим размерам колонки и используемой скорости газа.
- 5.12 Контроллер/Система измерения пиков, имеющие широкий диапазон чувствительности (0 1 В) и обеспечивающие измерение высоты/площади пиков на наклонной нулевой линии и контроль автоматического управления кранами в соответствии с выбранной оператором последовательностью
- **5.13 Вспомогательные краны, трубки и другие аксессуары,** для контроля потока пробы газа в хроматограф и для отключения этого потока на определенный период времени до ввода пробы.


6 Схематическое изображение конфигурации системы переключения колонок


а) Первоначальная конфигурация: все краны в позиции 1


b) Ввод пробы: V1 в позиции 2

с) Обратная продувка C₆₊: V2 в позиции 2

d) Изолируют N₂, C₁, CO₂, C₂; измеряют C₃ - C₅: V3 в позиции 2

е) Снова присоединяют колонку 3 - измеряют N_2 , C_1 , CO_2 , C_2 :V3 в позиции 1

Рисунок 2 — Схематическое изображение конфигурации системы переключения колонок

Примечание — В качестве ограничителя может быть использован дроссель или пневмосопротивление.

7 Проведение анализа

7.1 Контроль оборудования

Газовый хроматограф устанавливают и настраивают в соответствии с инструкциями изготовителя.

7.1.1 Кондиционирование колонок

Колонки, описанные в 5.8 и 5.9, не требуют кондиционирования или активации, и обычно хорошо работают в своих температурных диапазонах. В то же время, в начальный период применения можно обнаружить унос из колонки небольшого количества неподвижной фазы за счет примесей, кипящих при низких температурах, что может вызвать нестабильность нулевой линии. Работа хроматографа в течение не менее 8 часов при пропускании газа-носителя в отсутствие проб при температуре на 20 °C - 40 °C выше рекомендованной рабочей температуры, должна устранить этот эффект.

Остаточная поглощенная влага в трубках, по которым подаются газноситель или газовая проба, могут стать причиной появления необъяснимых пиков, помимо ожидаемых. Устранение этого эффекта обеспечивается путем нескольких вводов пробы при работе хроматографа в рекомендованных условиях.

Примечание – Кондиционирование колонок следует проводить в соответствии с рекомендациям изготовителя.

7.2 Работа оборудования

7.2.1 Аналитический метод

Примеры типичных рабочих условий хроматографа для комплектов колонок 1 (5.9.1) и 2 (5.9.2) приведены в таблицах 2 и 3.

ΓΟCT 31371.5—202___

(проект, окончательная редакция)

Таблица 2 – Пример условий проведения анализа, комплект колонок 1

	Колонка 1	Колонка 2	Колонка 3		
Неподвижная фаза	Силиконовое	Силиконовое	Силиконовое		
	масло DC 200/500	масло DC 200/500			
Содержание, %	28	28	15		
Носитель	Chromosorb P-AW	Chromosorb P-AW			
Адсорбент			Porapak N		
Размер в меш.	45/60	45/60	50/80		
Длина колонки, м	0,75	5,2	2,4		
Внутренний диаметр	2	2	2		
колонки, мм					
Материал колонки	Нержавеющая стал	1Ь			
Температура, °С	100				
Газ-носитель	Гелий				
Давление газа-	0,4				
носителя, МПа	0,4				
Скорость потока,	28				
СМ ³ /МИН	20				
Детектор	ДТП				
Температура					
детектора, °С, не	100				
менее					
Устройство ввода	Кран-дозатор				
пробы	пран дозатор				
Температура	100				
крана-дозатора, °С					
Объем пробы, см ³	1,0				

Таблица 3 – Пример условий проведения анализа, комплект колонок 2

	Колонка 1	Колонка 2	Колонка 3		
Неподвижная фаза	Оксидипропио-	Силиконовое	Силиконовое		
	нитрил	масло DC 200/500			
Содержание, %	28	20	15		
Носитель		Chromosorb P-AW			
Адсорбент	Porasil C		HayeSep N		
Размер в меш.	80/100	80/100	80/100		
Длина колонки, м	0,3	2,1	2,1		
Внутренний диаметр	0,75	0,75	0,75		
колонки, мм					
Материал колонки	Нержавеющая стал	Ъ			
Температура, °С	80				
Газ-носитель	Гелий				
Давление газа-	0,4				
носителя, МПа					
Скорость потока,	28				
СМ ³ /МИН					
Детектор	ДТП				
Температура					
детектора, °С, не	80				
менее					
Устройство ввода	Кран-дозатор				
пробы	пран доскор				
Температура	80				
крана-дозатора, °С					
Объем пробы, см ³	0,25				

7.2.2 Ввод пробы

Продувают кран–дозатор анализируемым газом, при этом объем продувочного газа должен быть не менее чем 20–кратный суммарный объем петли крана–дозатора и подводящих трубок. Продувку проводят с расходом анализируемого газа не менее 25 см³/мин, контролируемым встроенным в хроматограф расходомером.

Прекращают продувку, дают газу достичь температуры крана и окружающего давления, после этого начинают аналитический цикл, вводя пробу в хроматограф и переключая краны соответствующим образом.

Если используемый объем пробы недостаточен для продувки крана, то загрязнение линий воздухом или предшествующей пробой будет мешать определению. В таком случае увеличивают объем пробы, используемой для продувки, путем увеличения времени продувки или расхода газа.

Примечание – Дозирующую петлю следует продувать газом в течение точного периода времени с определенной скоростью, а затем пробу перед ее вводом выдерживать до выравнивания с давлением окружающей среды. При отсутствии оборудования, которое может подтвердить наступление равновесия, между переключением крана отбора пробы газа и вводом должно пройти фиксированное время, например 2 с.

7.2.3 Анализ

Аналитическая система, приведенная на рисунке 2, состоит из одного шестипортового крана-дозатора для ввода пробы, V1, одного шестипортового крана для обратной продувки, V2, и одного шестипортового запорного крана V3. Ограничитель А поддерживает пневматический баланс системы, когда колонка 3 изолирована. Подробное описание подготовки хроматографа к работе приведено в приложении В. (Можно использовать один 10-портовый кран вместо кранов V1 и V2, контролируя и ввод пробы, и обратную продувку колонки 1).

Установки времени переключений кранов должны гарантировать, что:

- а) кран V2 возвращается в положение обратной продувки (положение 1) после того, как весь *н*-пентан выходит из колонки 1, но до того, как первый изомер C₆ выходит из колонки 1 по пути в колонку 2;
- b) кран V3 переключается для того, чтобы отделить колонку 2 (положение 2) до того, как весь пропан выходит из колонки 2 (по пути в колонку 3) и после того, как весь этан вышел из колонки 2 и поступил в колонку 3;
- с) кран V3 не поворачивают, чтобы переключить колонку 3 (положение 1),
 до тех пор, пока не зарегистрирован весь н-пентан, вышедший из колонки 2
 через колонку 1.

Типичная хроматограмма приведена на рисунке 3.

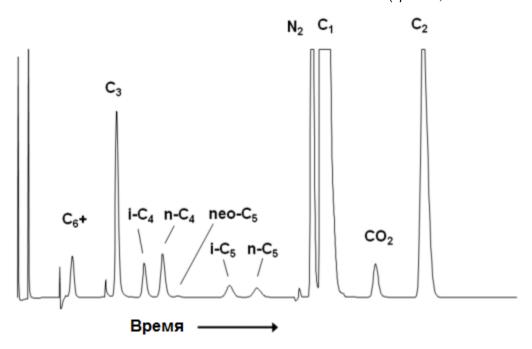


Рисунок 3 — Типичная хроматограмма природного газа

7.2.4 Разрешение пиков

Важно, чтобы пики всех компонентов измерялись без искажения со стороны других пиков. Разрешение между соседними пиками можно оценить согласно *ГОСТ 31371.7—2020, п.8.1.3 или по формулам*¹⁾. Вместе с тем существуют конкретные пары пиков, разрешение которых является критическим, поскольку их удовлетворительное разрешение гарантирует разрешение других пар компонентов (см. таблицу 4).

Норматив на разрешение зависит от требований к точности определения содержания компонентов, приемлемой для конкретных применений. Ниже указано два значения — среднее разрешение, которое будет доступно если процедура исполняется удовлетворительно, и высокое разрешение, которое может потребовать модификации: изменения размеров колонок, температуры и скорости потока, и скорее всего, займет больше времени.

$$m R_{AB}=2\cdotrac{ au_A- au_B}{\lambda_A+\lambda_B}$$
 или $m R_{AB}=rac{ au_A- au_B}{\lambda_A'+\lambda_B'}$,

еде R _{дв.} - разрешение двух соседних пиков;

 $au_{\mathrm{A}}\,$ и $au_{\mathrm{B}}\,$ - время удерживания компонентов A и B, соответственно, c;

 $\lambda_{_{\rm A}}$ и $\lambda_{_{\rm B}}$ - значения ширины пиков A и B в их основании, с.

 $\lambda_{\rm A}'$ и $\lambda_{\rm B}'$ - значения ширины пиков A и B на ½ их высоты, с.

Примечание – Разрешение 1,5 или выше указывает на разделение между симметричными пиками у базовой линии. Разрешение 1,0 берется как минимальное значение для количественного измерения¹).

Таблица 4 – Разрешение пиков

Компонент 1	Компонент 2	Среднее разрешение	Высокое разрешение
<i>изо-</i> Бутан	<i>н-</i> Бутан	1,5	2,0
Азот	Метан	1,25	2,0
Диоксид углерода	Этан	2,0	2,3

7.2.5 Градуировка

Градуируют хроматограф в соответствии с процедурами, описанными в ГОСТ 31371.1.

8 Обработка результатов

- 8.1 Обработку результатов анализа выполняют в соответствии с ГОСТ 31371.1.
- 8.2 Вычисление неопределенности проводят в соответствии с ГОСТ 31371.2.
 - 8.3 Протокол испытаний оформляют в соответствии с ГОСТ 31371.1.

 $^{^{1)}}$ При использовании современных аналитических систем с высокоэффективными колонками и детекторами высокое разрешение может быть достигнуто при значениях R_{AB} менее 1. В таких случаях за норматив на приемлемое разрешение для двух соседних пиков принимают разрешение, при котором высота точки пересечения двух пиков не превышает 1/3 высоты минимального из неразделенных пиков.

Приложение A (справочное)

Пример применения

А.1 Общие положения

В данном примере рассматривается анализ по типу 2 (ГОСТ 31371.1). Сделано предположение, что отклик хроматографа на все компоненты описывается полиномом первого порядка, проходящим через начало координат. Содержание всех компонентов измерялось непосредственно по тем же компонентам, что и в стандартном образце (ГСО¹)). Другие компоненты не определялись. Корректировка результатов измерений от изменения давления не применялась ни при градуировке, ни при анализе пробы. Многоступенчатые методы анализа (с «бридж»-компонентом или без него) не применялись.

Оценка эффективности хроматографа согласно [1] выполнена до градуировки и анализа с использованием семи тестовых газов, каждый из которых содержал по 11 компонентов. Зная предполагаемое применение и примерный состав газов, которые будут представлены для анализа, принят рабочий диапазон, приведенный в таблице А.1.

Таблица А.1 – Рабочий диапазон хроматографа

Компонент	Молярная доля компонента, %					
KOMHONOM	Минимальное значение	Максимальное значение				
азот	0,20	12,20				
диоксид углерода	0,05	8,00				
метан	63,50	98,50				
этан	0,10	14,20				
пропан	0,05	7,80				
изо-бутан	0,01	1,20				
<i>н</i> -бутан	0,01	1,20				
нео-пентан	0,01	0,34				
изо-пентан	0,01	0,34				
н-пентан	0,01 0,34					
C ₆₊	0,05	0,34				

-

¹⁾ ГСО – стандартный образец природного газа утвержденного типа.

Результаты оценки эффективности хроматографа указаны в таблице А.2. Средние значения распределения ошибок от нелинейности, $\overline{\delta}_l$, указанные во втором столбце таблицы А.2, считаются достаточно близкими к нулю, поэтому введения поправки не требуется (см. ГОСТ 31371.1—2020, 6.9.4).

Таблица А.2 – Результаты оценки эффективности хроматографа

Компонент	$\overline{\delta}_l$,	$u^2(\overline{\delta}_l)$,	$\overline{u^2(\delta_l)}$,
	мол доля, %	мол.доля, %	мол.доля, %
азот	-0,026 937 130	0,000 309 597	0,002 748 444
диоксид углерода	-0,011 354 153	0,000 186 463	0,000 916 820
метан	0,085 980 308	0,000 945 917	0,028 341 745
этан	-0,030 749 812	0,000 600 030	0,004 667 961
пропан	-0,014 790 556	0,000 180 682	0,001 797 461
изо-бутан	-0,003 493 228	0,000 009 708	0,000 049 207
<i>н</i> -бутан	0,001 375 116	0,000 009 970	0,000 021 061
нео-пентан	-0,000 373 260	0,000 000 099	0,000 000 146
изо-пентан	0,000 278 938	0,000 001 441	0,000 004 245
<i>н</i> -пентан	0,000 395 722	0,000 000 985	0,000 001 035
C ₆₊	-0,000 332 000	0,000 000 756	0,000 002 234

В приведенном примере стандартные неопределенности молярной доли компонентов выражены большим количеством значащих цифр исключительно с целью возможности проверки вычислений и программного обеспечения. Представление результатов следует осуществлять в соответствии с руководящими указаниями, приведенными в пункте А.6.

А.2 Градуировка

Градуировка выполнена путем 10 вводов проб рабочего эталона, результаты измерений представлены в таблице А.3.

Таблица А.3 – Результаты градуировки хроматографа с использованием рабочего эталона

	Рабочий	Рабочий эталон										
Компонент	$x_{i,c}$, %	$u(x_{i,c})$			Откли	к на повтор	ные вводы г	тробы рабоч	Отклик на повторные вводы пробы рабочего эталона, $\mathcal{Y}_{i,c,l}$., <i>yi,c,l</i>		
N_2	4,491	002 200,0	45 418 913	45 419 334	45 442 468	45 419 580	45 416 382	45 415 368	45 366 878	45 320 974	45 318 263	45 356 454
CO_2	3,321	0,006 300	40 572 613	40 581 705	40 601 104	40 576 934	40 577 794	40 533 155	40 529 131	40 489 430	40 473 732	40 489 807
CH₄	80,483	0,035 000	668 630 412	668 810 045	668 869 106	668 450 572	668 514 839	667 962 151	668 021 535	667 423 648	667 503 177	667 839 832
C ₂ H ₆	6,971	0,011 000	95 587 376	95 617 094	95 647 647	95 609 735	95 589 062	95 473 045	95 479 716	95 420 277	95 366 831	95 371 596
C ₃ H ₈	3,286	0,010 900	57 744 920	57 749 069	57 773 820	57 743 122	57 726 205	57 691 084	57 690 919	57 635 967	57 617 072	57 642 576
<i>u3o</i> -C₄H ₁₀	0,499	0,002 000	10 042 575	10 047 566	10 050 301	10 045 957	10 018 568	10 033 946	10 035 598	10 019 507	10 012 115	10 021 785
<i>H</i> -C₄H ₁₀	0,507	0,002 030	10 717 709	10 721 066	10 726 790	10 719 269	10 643 518	10 714 279	10 716 121	10 682 900	10 671 799	10 699 937
нео-С ₅ Н ₁₂	0,110	0,000 930	2 467 959	2 464 967	2 471 477	2 472 487	2 422 200	2 467 128	2 467 231	2 450 889	2 439 380	2 464 724
изо-С ₅ Н ₁₂	0,112	0,000450	2 602 386	2 588 249	2 599 693	2 595 334	2 597 443	2 595 279	2 589 539	2 588 531	2 585 677	2 586 644
<i>н</i> -С ₅ Н ₁₂	0,110	0,000 440	2 670 849	2 667 285	2 674 288	2 671 577	2 673 610	2 667 543	2 665 677	2 656 744	2 667 690	2 658 937
<i>н</i> -С ₆ Н ₁₄	0,109	0,000 550	2 891 785	2 891 302	2 894 087	2 889 788	2 893 454	2 888 157	2 888 979	2 885 194	2 887 248	2 887 136

Для каждого компонента предполагаемая аналитическая функция была определена, исходя из среднего значения 10 откликов хроматографа на каждый компонент в соответствии с формулой (6) ГОСТ 31371.1—2020. Коэффициенты градуировочной зависимости $b_{1,j}$ и их неопределенности приведены в таблице A.4

Таблица А.4 – Средние значения откликов, коэффициенты предполагаемой аналитической функции и их неопределенности

Компонент	$\overline{{\cal Y}_{i,c}}$	$u(\overline{y_{i,c}})$	$\overline{b_{_{1,i}}}$	$u(b_{\scriptscriptstyle 1,i})$	$u(\overline{b_{\scriptscriptstyle 1,i}})$
N ₂	45 389 461	14 233	9,894 4E-08	1,724 6E-10	5,453 6E-11
CO ₂	40 542 542	14 490	8,191 4E-08	1,581 3E-10	5,000 4E-11
CH ₄	668 202 532	165 777	1,204 5E-07	6,030 4E-11	1,907 0E-11
C ₂ H ₆	95 516 238	33 698	7,298 2E-08	1,180 1E-10	3,731 7E-11
C ₃ H ₈	57 701 475	17 268	5,694 8E-08	1,896 7E-10	5,997 9E-11
<i>изо</i> -С ₄ Н ₁₀	10 032 792	4 385	4,971 7E-08	2,005 3E-10	6,341 2E-11
<i>н</i> -С ₄ Н ₁₀	10 701 339	8 544	4,736 8E-08	1,934 3E-10	6,116 8E-11
нео-C ₅ H ₁₂	2 458 844	5 191	4,485 8E-08	3,899 0E-10	1,233 0E-10
<i>изо</i> -С ₅ Н ₁₂	2 592 878	1 861	4,308 0E-08	1,762 8E-10	5,574 6E-11
<i>н</i> -С ₅ Н ₁₂	2 667 420	1 837	4,131 3E-08	1,673 9E-10	5,293 3E-11
<i>н</i> -С ₆ Н ₁₄	2 889 713	919	3,779 4E-08	1,907 1E-10	6,030 8E-11

А.3 Вычисление значений молярной доли компонентов

А.3.1 Метод нормализации среднего (см. ГОСТ 31371.1—2020, 6.9.2)

Анализ выполнен путем 10-кратного ввода неизвестной пробы, полученные значения откликов приведены в таблице А.5.

Таблица А.5 – Значения откликов, полученных при анализе неизвестной пробы

	10 216 049	18 377 358	756 923 377	34 327 857	26 359 524	3 007 862	1 098 003	2 240 447	6 491 912	6 806 755	7 490 287
	10 219 179	18 380 028	757 112 836	34 340 359	26 357 254	3 006 436	1 096 913	2 243 788	6 498 443	6 798 891	7 490 009
бы, ${\cal Y}_{i,l}$	10 222 707	18 383 646	757 351 102	34 338 050	26 372 539	3 002 502	1 082 269	2 229 004	6 527 695	060 088 9	7 493 968
звестной про	10 229 693	18 401 539	757 531 930	34 382 000	26 390 844	3 010 653	1 089 512	2 232 392	6 504 860	6 800 746	7 503 020
е вводы неи	10 232 300	18 411 116	757 635 169	34 391 132	26 403 122	3 011 849	1 097 826	2 247 109	6 499 341	6 815 522	7 503 406
на повторнь	10 241 295	18 424 393	758 168 377	34 418 949	26 413 480	3 013 273	1 091 537	2 238 311	6 508 789	6 825 003	7 507 098
Отклики, полученные на повторные вводы неизвестной пробы, $\left. \mathcal{Y}_{i,j} \right.$	10 244 738	18 434 085	758 725 180	34 431 624	26 425 904	3 011 698	1 083 432	2 230 482	6 509 851	6 829 689	7 510 464
Отклики	10 246 618	18 435 304	758 995 540	34 435 930	26 432 384	3 018 742	1 099 073	2 245 323	6 511 176	6 825 102	7 510 995
	10 240 495	18 422 045	758 407 109	34 419 925	26 417 468	3 013 402	1 094 049	2 242 986	0 206 200	6 826 995	7 509 958
	10 236 417	18 415 310	758 495 738	34 401 492	26 410 948	3 012 585	1 089 552	2 233 201	6 501 407	6 820 028	7 506 943
Компонент	N_2	CO ₂	CH ₄	C ₂ H ₆	C ₃ H ₈	<i>u30-</i> C ₄ H ₁₀	<i>H</i> -C₄H ₁₀	нео-С₅Н₁₂	изо-С ₅ Н ₁₂	H-C ₅ H ₁₂	Ç

Средние значения откликов, вычисленных по ГОСТ 31371.1—2020, формула (7), приведены в таблице А.6.

Таблица А.6 – Средние значения откликов и неопределенности, полученные при анализе неизвестной пробы

Компонент	$\overline{\mathcal{Y}}_i$	$u(\overline{y}_i)$	$u(y_{i,l})$
N ₂	10 232 949	3 425	10 830
CO ₂	18 408 482	6 919	21 881
CH ₄	757 934 636	226 900	717 522
C ₂ H ₆	34 388 732	12 816	40 527
C ₃ H ₈	26 398 346	8 572	27 106
<i>u30</i> -C ₄ H ₁₀	3 010 900	1 404	4 441
<i>H</i> -C ₄ H ₁₀	1 092 217	1 910	6 040
нео-C ₅ H ₁₂	2 238 304	2 087	6 600
изо-C ₅ H ₁₂	6 506 026	3 061	9 678
<i>н</i> -С ₅ Н ₁₂	6 817 882	3 746	11 844
C ₆₊	7 502 615	2 606	8 240

Ненормализованные значения молярной доли компонентов были вычислены в соответствии с ГОСТ 31371.1—2020, формула (9) и приведены в таблице А.7.

Нормализованные молярной доли компонентов были вычислены в соответствии с ГОСТ 31371.1—2020, формула (11) и приведены в таблице А.7 (необходимо отметить, что X_{oc} в данном примере равен нулю).

Таблица A.7 — Ненормализованные и нормализованные значения молярной доли компонентов и их неопределенности

Компонент	<i>x</i> _i *, %	$u(x_i^*)$	<i>X_i</i> , %	$u(x_i)$
N ₂	1,012	0,019 463	1,023	0,019 479
CO ₂	1,508	0,011 153	1,524	0,011 160
CH ₄	91,291	0,067 999	92,239	0,034 802
C ₂ H ₆	2,510	0,024 978	2,536	0,024 668
C ₃ H ₈	1,503	0,014 914	1,519	0,014 886
<i>изо</i> -С ₄ Н ₁₀	0,150	0,002 675	0,151	0,002 702
<i>H</i> -C ₄ H ₁₀	0,052	0,001 818	0,052	0,001 836
нео-C ₅ H ₁₂	0,100	0,000 351	0,101	0,000 363
изо-C ₅ H ₁₂	0,280	0,000 852	0,283	0,000 886
<i>н</i> -С ₅ Н ₁₂	0,282	0,000 610	0,285	0,000 653
C ₆₊	0,284	0,000 724	0,286	0,000 763
Сумма	98,972		100,00	

А.3.2 Метод пошаговой нормализации (см. 6.9.3 ГОСТ 31371.1—2020)

Для каждого ввода пробы неизвестного состава были вычислены ненормализованные значения молярной доли компонентов в соответствии с ГОСТ 31371.1—2020, формула (13), приведенные в таблице А.8.

Для каждого ввода пробы неизвестного состава были вычислены нормализованные значения молярной доли компонентов в соответствии с ГОСТ 31371.1—2020, формула (15), приведенные в таблице А.9.

Необходимо отметить, что \mathcal{X}_{oc} в данном примере равен нулю.

-	Измер	Измерение 1 Измер	Измер	Измерение 2 Измерение 3 Измерение 4 Измерен	Измер	Измерение 3	Измер	Измерение 4	Измерение	ение 5
Компонент	$\chi_{i,j}^*$	$u(x_{i,l}^*)$	*X*	$u(x_{i,l}^*)$	$\overset{*}{\mathcal{X}_{i,j}}$	$u(x_{i,j}^*)$	$\chi_{i,j}^*$	$u(x_{i,l}^*)$	$\chi_{i,j}^*$	$u(x_{i,l}^*)$
N ₂	1,013	0,0615	1,013	0,061 5	1,014	0,0615	1,014	0,0615	1,013	0,061 5
CO ₂	1,508	0,0352	1,509	0,0352	1,510	0,0352	1,510	0,0352	1,509	0,0352
CH ₄	91,359	0,2126	91,348	0,2126	91,419	0,2126	91,386	0,2126	91,319	0,2126
C ₂ H ₆	2,511	0,079 0	2,512	0,079 0	2,513	0,079 0	2,513	0,079 0	2,512	0,0790
C ₃ H ₈	1,504	0,047 1	1,504	0,047 1	1,505	0,047 1	1,505	0,047 1	1,504	0,047 1
<i>u30-</i> C ₄ H ₁₀	0,150	0,008 4	0,150	0,008 4	0,150	0,0084	0,150	0,008 4	0,150	0,008 4
H-C ₄ H ₁₀	0,052	0,005 7	0,052	0,005 7	0,052	0,005 7	0,051	0,005 7	0,052	0,005 7
<i>н</i> ео-С ₅ Н ₁₂	0,100	0,001 1	0,101	0,001 1	0,101	0,001 1	0,100	0,001 1	0,100	0,001 1
изо-С ₅ Н ₁₂	0,280	0,002 7	0,280	0,002 7	0,280	0,002 7	0,280	0,002 7	0,280	0,002 7
H-C ₅ H ₁₂	0,282	0,0019	0,282	0,0019	0,282	0,0019	0,282	0,0019	0,282	0,0019
C_{6+}	0,284	0,002 1	0,284	0,002 1	0,284	0,002 1	0,284	0,002 1	0,284	0,002 1
Сумма	99,042		99,035		99,110		99,075		900'66	
	Измер	Измерение 6	Измер	рение 7	Измер	Измерение 8	Измерение 9	ение 9	Измере	Измерение 10
Компонент	$\overset{*}{\mathcal{X}_{i,j}}$	$u(x_{i,l}^*)$	$\overset{*}{\mathcal{X}_{i,j}}$	$u(x_{i,l}^*)$	$\overset{*}{X_{i,j}}$	$u(x_{i,l}^*)$	$\chi^*_{i,j}$	$u(x_{i,l}^*)$	$\chi_{i,j}^*$	$u(x_{i,l}^{st})$
N_2	1,012	0,061 5	1,012	0,0615	1,011	0,061 5	1,011	0,061 5	1,011	0,061 5
CO ₂	1,508	0,0352	1,507	0,0352	1,506	0,0352	1,506	0,0352	1,505	0,0352
CH ₄	91,255	0,2125	91,242	0,2125	91,221	0,2125	91,192	0,212.5	91,169	0,2125
C_2H_6	2,510	0,079 0	2,509	0,079 0	2,506	0,079	2,506	0,079	2,505	0,079 0
C ₃ H ₈	1,504	0,047 1	1,503	0,047 1	1,502	0,047 1	1,501	0,047 1	1,501	0,047 1
<i>u3o</i> -C₄H₁₀	0,150	0,008 4	0,150	0,008 4	0,149	0,008 4	0,149	0,008 4	0,150	0,008 4
<i>H</i> -C₄H ₁₀	0,052	0,005 7	0,052	0,005 7	0,051	0,005 7	0,052	0,005 7	0,052	0,005 7
<i>нео-</i> С ₅ H ₁₂	0,101	0,001 1	0,100	0,001 1	0,100	0,001 1	0,101	0,001 1	0,101	0,001 1
изо-С ₅ Н ₁₂	0,280	0,002 7	0,280	0,002 7	0,281	0,002 7	0,280	0,002 7	0,280	0,002 7
<i>H</i> -C ₅ H ₁₂	0,282	0,001 9	0,282	0,001 9	0,282	0,0019	0,281	0,001 9	0,281	0,001 9
C_{6+}	0,284	0,002 1	0,284	0,002 1	0,283	0,002 1	0,283	0,002 1	0,283	0,002 1
Сумма	98,937		98,920		68,863		98,862		98,838	

Таблица А.9 – Нормализованные значения молярной доли компонентов и их неопределенности для каждого измерения

Компонент N2 CO2 CH4 9 C2H6 C3H8 U30-C4H10 H-C4H10 Heo-C5H12	2,535 1,519 0,151 0,052	$u(x_{i,l})$								
4H10 110 56H12	1,023 1,523 12,242 2,535 1,519 0,151 0,052 0,101	0.061.6	$oldsymbol{\mathcal{X}}_{i,J}$	$u(x_{i,l})$	$\chi_{i,j}$	$u(x_{i,l})$	$\chi_{i,j}$	$u(x_{i,l})$	$X_{i,j}$	$u(x_{i,l})$
24H10 110 55H12	1,523 12,242 2,535 1,519 0,151 0,052 0,101)	1,023	0,0616	1,023	0,061 5	1,023	0,061 5	1,023	0,061 5
24H10 110 55H12	2,535 2,535 1,519 0,151 0,052 0,101	0,0353	1,524	0,0353	1,524	0,0352	1,524	0,0353	1,524	0,035 2
4H10 110 5H12	2,535 1,519 0,151 0,052 0,101	0,1100	92,238	0,1100	92,239	0,1099	92,239	0,1099	92,236	0,1100
24H10 H10 S6H12	0,1519	0,078 0	2,537	0,078 0	2,536	0,077 9	2,536	0,077 9	2,537	0,079 0
	0,151	0,047 0	1,519	0,047 0	1,519	0,047 0	1,519	0,047 0	1,519	0,047 1
	0,052	0,008 5	0,151	0,008 5	0,151	0,008 5	0,151	0,008 5	0,151	0,008 4
	0,101	0,0058	0,052	0,0058	0,053	0,0058	0,052	0,005 8	0,052	0,005 7
	200	0,001 1	0,102	0,001 1	0,102	0,001 1	0,101	0,001 1	0,101	0,001 1
	0,400	0,0028	0,283	0,0028	0,283	0,0028	0,283	0,0028	0,283	0,002 7
H-C ₅ H ₁₂	0,284	0,0019	0,285	0,002 1	0,284	0,002 1	0,285	0,002 1	0,285	0,0019
Ş	0,286	0,002 1	0,287	0,002 4	0,286	0,002 4	0,286	0,002 4	0,287	0,002 1
Сумма 10	100,000		100,000		100,000		100,000		100,000	
	Измерение 6	эние 6	Измер	Измерение 7	Измерение 8	ение 8	Измерение 9	ение 9	Измерение 10	ние 10
Компонент	$\mathcal{X}_{i,I}$	$u(x_{i,l})$	$\mathcal{X}_{i,l}$	$u(x_{i,i})$	$\mathcal{X}_{i,I}$	$u(x_{i,i})$	$\mathcal{X}_{i,J}$	$u(x_{i,i})$	$\mathcal{X}_{i,j}$	$u(x_{i,l})$
Z Z	1,023	0,0616	1,023	0,0616	1,023	0,0616	1,023	0,0617	1,023	0,061 7
CO ₂	1,524	0,0353	1,524	0,0353	1,523	0,0353	1,523	0,0353	1,523	0,0353
CH ₄ 9	92,236	0,1101	92,238	0,1101	92,242	0,1101	92,242	0,1102	92,241	0,1102
C ₂ H ₆	2,537	0,078 0	2,537	0,078 0	2,534	0,078 1	2,535	0,078 1	2,535	0,078 1
C ₃ H ₈	1,520	0,047 1	1,519	0,047 1	1,519	0,047 1	1,518	0,047 1	1,519	0,047 1
<i>u30-</i> C ₄ H ₁₀ (0,151	0,008 5	0,151	0,008 5	0,151	0,008 5	0,151	0,008 65	0,151	0,008 6
<i>H</i> -C ₄ H ₁₀ (0,053	0,005 8	0,052	0,005 8	0,052	0,0058	0,053	0,005 8	0,053	0,0058
<i>нео-</i> С ₅ Н ₁₂ (0,102	0,0012	0,101	0,001 1	0,101	0,001 1	0,102	0,001 2	0,102	0,001 2
изо-С ₅ Н ₁₂ (0,283	0,0028	0,283	0,0028	0,284	0,0028	0,283	0,0028	0,283	0,0028
<i>H</i> -C ₅ H ₁₂ (0,285	0,002 1	0,284	0,002 1	0,285	0,002 1	0,284	0,002 1	0,285	0,002 1
Cet	0,287	0,002 4	0,287	0,002 4	0,286	0,002 4	0,286	0,002 4	0,286	0,002 4
Сумма 10	100,000		100,000		100,000		100,000		100,000	

Для каждого компонента были вычислены средние значения молярной доли из полученных при каждом дозировании пробы значений в соответствии с ГОСТ 31371.1—2020, формула (16), полученные данные приведены в таблице А.10.

Таблица А.10 – Средние значения молярной доли компонентов и их неопределенности

Компонент	$\overline{\mathcal{X}}_i$	$u(\bar{x}_i)$
N ₂	1,023	0,019 479
CO ₂	1,524	0,011 160
CH ₄	92,239	0,034 802
C ₂ H ₆	2,536	0,024 668
C ₃ H ₈	1,519	0,014 886
изо-C ₄ H ₁₀	0,151	0,002 701
H-C4H ₁₀	0,052	0,001 836
нео-C ₅ H ₁₂	0,101	0,000 363
изо-С ₅ Н ₁₂	0,283	0,000 886
H-C ₅ H ₁₂	0,285	0,000 653
C ₆₊	0,286	0,000 763

А.4 Вычисление неопределенности молярной доли компонентов

А.4.1 Метод нормализации среднего (см. ГОСТ 31371.2—2020, 5.3.2)

Сначала были вычислены неопределенности ненормализованных значений молярной доли компонентов по ГОСТ 31371.2—2020, формула (3), приведенные в таблице А.7. Исходные данные для формулы (3) были получены следующим образом:

- неопределенности средних откликов $u(\bar{y}_i)$ для заданной выборки были вычислены в соответствии с ГОСТ 31371.2—2020, формула (6), и приведены в таблице A.6;
- неопределенности средних коэффициентов $u(\overline{b_{{\rm l},i}})$ для заданной выборки были вычислены в соответствии с ГОСТ 31371.2—2020, формула (7), и приведены в таблице A.4;
- включены дополнительные члены, связанные с неопределенностями от нелинейности в соответствии с ГОСТ 31371.2—2020, формула (3), так как корректировка ненормализованных значений молярной доли не проводилась. Дополнительные члены, связанные с нелинейностью, приведенные в таблице А.2, учитывают в формуле (3) в относительном виде.

Неопределенности нормализованных значений молярной доли компонентов вычислены в соответствии с ГОСТ 31371.2—2020, формула (5) и приведены в таблице А.7. Необходимо отметить, что в данном примере члены X_{oc} и $\mathcal{U}(X_{oc})$ равны нулю.

А.4.2 Метод пошаговой нормализации (см. ГОСТ 31371.2—2020, 5.3.3)

Сначала для каждого измерения были вычислены неопределенности ненормализованных значений молярной доли компонентов по формуле (14) ГОСТ 31371.2—2020, представленные в таблице А.8. Исходные данные для формулы (3) были получены следующим образом:

- неопределенности откликов $u(y_{i,l})$ были вычислены как стандартное отклонение и приведены в таблице A.6;
- неопределенности коэффициентов $u(b_{{\scriptscriptstyle 1},i})$ были вычислены в соответствии с ГОСТ 31371.2—2020, формула (17) и приведены в таблице А.4;
- включены дополнительные члены, связанные с неопределенностями от нелинейности в соответствии с ГОСТ 31371.2—2020, формула (14), так как корректировка ненормализованных значений молярной доли не проводилась. Дополнительные члены, связанные с нелинейностью, приведенные в таблице А.2, учитывают в формуле (14) в относительном виде.

Для каждого измерения были вычислены неопределенности молярной доли компонентов по формуле (16) ГОСТ 31371.2—2020 и приведены в таблице А.10. Необходимо отметить, что в данном примере члены X_{oc} и $u(x_{oc})$ равны нулю.

А.5 Сопоставление методов нормализации среднего и пошаговой нормализации

Строго говоря, значения молярной доли, вычисленные двумя методами, немного отличаются, и степень отличия значений молярной доли (и их неопределенности) зависит от величины входных неопределенностей (в основном, повторяемость отклика хроматографа и неопределенность аттестации рабочего эталона). Для этого примера входные неопределенности невелики и расхождения между двумя методами пренебрежимо малы.

А.6 Отчет о результатах

Для лабораторных анализов, в которых указывается расширенная неопределенность, расширенную неопределенность молярной доли следует округлять до двух значащих цифр, используя обычные правила округления в соответствии с ГОСТ 34100.3. Числовое значение молярной доли следует округлять до наименьшей значащей цифры в расширенной неопределенности.

А.7 Электронная таблица Excel

Электронная таблица Excel, реализующая этот пример, предоставляется по запросу. Она содержит пользовательскую функцию, реализующую формулу (5) и числитель формулы (16) ГОСТ 31371.2—2020.

Хотя обеспечение электронной таблицы выполнено добросовестно, это не является гарантией ее применения в договорных или других коммерческих приложениях и нет гарантии, что она безошибочна. Тем не менее она была протестирована несколькими экспертами и не содержит известных ошибок на момент опубликования.

Примечание— Рекомендуется для конкретных методик измерений на рабочих хроматографах при проведении коммерческого учета использовать программное обеспечение, прошедшее сертификацию.

Приложение В (справочное)

Процедура настройки времени переключения кранов и настройки ограничителя

- **В.1** Устанавливают все краны в позицию 1 [см. рисунок 2 а)], так чтобы маршрут потока был: колонка 1 (низкая разделительная способность) → колонка 2 (высокая разделительная способность) → колонка 3 (пористый полимер) → детектор. Устанавливают температуру колонки и скорость потока газа-носителя через рабочую камеру ДТП на значения, указанные изготовителем. При отсутствии данных от изготовителя используют значения 95 °C и 28 см³/мин для системы, использующей колонки с внутренним диаметром 2 мм.
- **В.2** Переключают кран 3 в позицию 2 [см. рисунок 2 d)] так, чтобы обводить колонку 3. Дают потоку газа-носителя стабилизироваться, затем регулируют ограничитель A, так чтобы поток через рабочую камеру ДТП был идентичен измеренному в B.1.
 - В.3 Устанавливают поток газа сравнения через ДТП равным измеренному в В.1.
- **В.4** Оставив кран 3 в позиции 2, вводят пробу природного газа, переключив кран 1 в позицию 2. Записывают хроматограмму по мере элюирования компонентов из колонки 2. Время удерживания для *н*-пентана должно быть порядка 2/3 от предполагаемой продолжительности цикла анализа. Если оно отличается значительно, возвращаются к В.1 и регулируют скорость соответствующим образом. Затем повторяют В.2 В.4.
- **В.5** Если изготовитель не указал время переключения, измеряют время с момента ввода пробы до минимума на впадине кривой хроматограммы между этаном и пропаном (Т_{FIRSTCUT}). Это будет начальное время, используемое для удерживания более легких компонентов на колонке 3.
 - В.6 Обратная продувка
- **В.6.1** Операция обратной продувки должна позволить измерить сигналы всех элюирующихся последними C_5 (H- C_5) при прямой продувке, а сигналы всех самых легких C_6 (2,2-диметилбутан) при обратной продувке. Для установки параметров используют газовую смесь, содержащую H- C_5 и 2,2-диметилбутан при отсутствие других C_6 или более тяжелых компонентов.
- **В.6.2** Устанавливают начальное время порядка 1 мин (или по рекомендации изготовителя) после ввода пробы, при котором переключают кран V2 в позицию 2. Переключают V3 в позицию 2, чтобы изолировать колонку 3. Вводят газовую смесь и записывают хроматограмму. 2,2-диметилбутан должен появиться как компонент обратной продувки (C_{6+}) сразу после переключения крана V2 из позиции 1 в позицию 2, а

 $H-C_5$ должен появиться как нормально элюирующийся пик с немного продленным временем удерживания, чем измеренное в В.4. (Он должен пройти через колонку 1 дважды). Если пика C_{6+} не видно, уменьшают начальное время и повторяют этот раздел.

- **В.6.3** Продолжают ввод газовой смеси, увеличивая время обратной продувки (V2 в позиции 2) приращениями по 0,05 мин на последовательных вводах, пока не начнется уменьшение площади пика C_{6+} обратной продувки (фактически 2,2-диметилбутан).
- **В.6.4** Продолжают вводить смесь, уменьшая теперь продолжительность обратной продувки приращениями по 0,05 мин при последовательных вводах. Отмечают время, при котором площадь пика C_{6+} будет оставаться постоянной ($T_{BACK\ HIGH}$).
- **В.6.5** Продолжают вводить газовую смесь при дальнейших дискретных уменьшениях времени обратной продувки, пока размер пика H-пентана не начнет уменьшаться, при соответствующем увеличении размера пика C_{6+} . Отмечают самое последнее время обратной продувки, при которой площади обоих пиков остаются постоянной ($T_{BACK\ LOW}$).
- **B.6.6** Принимают ($T_{BACK\ LOW} + T_{BACK\ HIGH}$)/2 = T_{BACK} для обратной продувки колонки 1 (V2 \rightarrow позиция 2).
 - **В.7** Регулирование по времени V3
- **В.7.1** При отсутствии данных от изготовителя устанавливают регулировку по времени T_{BACK} для обратной продувки (V2 \rightarrow позиция 2) и T_{FIRST} сит для изолирования колонки 3 (V3 \rightarrow позиция 2). Переключают все краны сначала в позицию 1. Вводят пробу природного газа и, после элюирования H-пентана, переключают кран 3 в позицию 1. Отмечают это время ($T_{V3 \ OFF}$) и используют его для проведения дальнейших операций. Измеряют площадь пика для пропана, элюирующегося из колонки 2 (через колонку1), и площадь пика этана, элюирующегося из колонки 3 (также через колонку 1).
- **В.7.2** Повторяют анализ, уменьшая Т_{FIRST CUT} последовательно приращениями по 0,05 мин, пока сигнал этана, элюирующегося из колонки 3, не начнет уменьшаться.
- **В.7.3** Продолжают анализ, теперь увеличивая T_{FIRST CUT} приращениями по 0,05 мин, до получения постоянного значения времени для этана, элюирующегося из колонки 3. Отмечают наименьшее значение времени, при котором это происходит, и записывают как T_{FIRST LOW}.
- **В.7.4** Продолжают процесс, пока сигнал пропана, элюирющегося из колонки 2, не начнет уменьшаться. Отмечают время, при котором это начинает происходить, и записывают как Т_{FIRST HIGH}.
- **B.7.5** Принимают значение ($T_{FIRST\ LOW}$ + $T_{FIRST\ HIGH}$) / 2 = T_{V3ON} как время начала изоляции колонки 3.
 - В.8 Окончательная регулировка времени

Реализация метода со следующей синхронизацией приведена в таблице В.1.

ΓΟCT 31371.5—202__

(проект, окончательная редакция)

Время	Действие	Позиция клапана	Конфигурация
			системы
			переключения
			колонок
0,01 мин	Ввод	VI → позиция 2	Рисунок 2b
T _{BACK}	Обратная продувка	V2 → позиция 2	Рисунок 2с
T _{V3 ON}	Обвод колонки 3	V3 → позиция 2	Рисунок 2d
T _{V3 OFF}	Подключение колонки 3	V3 → позиция 1	Рисунок 2е
Конец измерения	Возвращение на старт	V1, V2 → позиция 1	Рисунок 2а

Приложение ДА (справочное)

Сведения о соответствии ссылочных межгосударственных стандартов международным документам, использованным в качестве ссылочных в примененном международном стандарте

Таблица ДА.1

Обозначение	Степень	Обозначение и наименование
ссылочного	соответствия	ссылочного
межгосударственного		международного документа
стандарта		
ΓΟCT 31371.1—2020	MOD	ISO 6974-1:2012 «Газ
(ISO 6974-1:2012)		природный. Определение состава и
		связанной с ним неопределенности
		газовой хроматографией. Часть 1.
		Общие указания и определение
		состава»
ГОСТ 31371.2—2020	MOD	ISO 6974-2:2012 «Газ
(ISO 6974-2:2012)		природный. Определение состава и
		связанной с ним неопределенности
		газовой хроматографией. Часть 2.
		Вычисление неопределенности»
ГОСТ 31369—20	MOD	ISO 6976:2016 «Газ природный.
(ISO 6976:2016)		Вычисление теплоты сгорания,
		плотности, относительной плотности
		и числа Воббе на основе
		компонентного состава"
ΓΟCT 34100.3—2017/	IDT	ISO/IEC Guide 98-3:2008
ISO/IEC Guide 98-3:2008		«Неопределенность измерения.
		Часть 3. Руководство по выражению
		неопределенности измерения»

Примечание — В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

- IDT идентичные стандарты;
- MOD модифицированные стандарты.

Приложение ДБ (справочное)

Изменения структуры межгосударственного стандарта, модифицированного по отношению к международному стандарту

Таблица ДБ.1

Структура настоящего стандарта	Структура международного стандарта
	ISO 6974-5:2014
Раздел 8	Раздел 8
Пункты	Пункты
8.1	_
8.2	8.1
8.3	8.2

Библиография

[1]	ИСО 10723:2012	Газ природный. Оценка эффективности аналитических
		систем ⁴⁾
	(ISO10723:2012)	(Natural gas - Performance evaluation for analytical
		systems)

 $^{^{4)}}$ В Российской Федерации действует ГОСТ Р ИСО 10723—2016 «Газ горючий природный. Оценка эффективности аналитических систем».

УДК 662.767:658.562:006.354	MKC 75.06	60
Ключевые слова: природный газ, компон	нентный состав, мол	пярная доля, газовая
хроматография, изотермический метод,	примеры вычислен	ний
Председатель МТК 52		Д.В. Сверчков
	личная подпись	инициалы, фамилия
Ответственный секретарь МТК 52		3.М. Юсупова
	личная подпись	инициалы, фамилия
Руководитель разработки		
И.о. руководителя научно-исследователь	ского	
отдела государственных эталонов в		
области физико-химических измерений		
ФГУП «ВНИИМ им. Д.И. Менделеева»		А.В. Колобова
	личная подпись	инициалы, фамилия
Исполнители:		
Руководитель сектора		
ФГУП «ВНИИМ им. Д.И. Менделеева»		Т.А. Попова
	личная подпись	инициалы, фамилия
Ведущий инженер		
ФГУП «ВНИИМ им. Д.И. Менделеева»		Н.О. Пивоварова
	личная подпис	ь инициалы, фамилия